A new individual-based spatial approach for identifying genetic discontinuities in natural populations

S. MANEL,* F. BERTHOUD,† E. BELLEMAIN,* M. GAUDEUL,* G. LUIKART,* J. E. SWENSON,‡ L. P. WAITS,§ P. TABERLET* and INTRABIODIV CONSORTIUM†

*Laboratoire d’Ecoologie Alpine, CNRS UMR 5553, Université Joseph Fourier, BP 53, F-38041 Grenoble Cedex 9, France, †Laboratoire de Physique et Modélisation des Milieux Condensés, Maison des Magistères, CNRS, BP 166, F-38042 Grenoble Cedex, France, ‡Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Post Box 5003, NO-1432 Ås, Norway, and Norwegian Institute for Nature Research Tungasletta 2, NO-7485 Trondheim, Norway, §Department of Fish and Wildlife Resources, University of Idaho, Moscow, ID 83844-1136, USA

Abstract

The population concept is central in evolutionary and conservation biology, but identifying the boundaries of natural populations is often challenging. Here, we present a new approach for assessing spatial genetic structure without the a priori assumptions on the locations of populations made by adopting an individual-centred approach. Our method is based on assignment tests applied in a moving window over an extensively sampled study area. For each individual, a spatially explicit probability surface is constructed, showing the estimated probability of finding its multilocus genotype across the landscape, and identifying putative migrants. Population boundaries are localized by estimating the mean slope of these probability surfaces over all individuals to identify areas with genetic discontinuities. The significance of the genetic discontinuities is assessed by permutation tests. This new approach has the potential to reveal cryptic population structure and to improve our ability to understand gene flow dynamics across landscapes. We illustrate our approach by simulations and by analysing two empirical datasets: microsatellite data of Ursus arctos in Scandinavia, and amplified fragment length polymorphism (AFLP) data of Rhododendron ferrugineum in the Alps.

Keywords: assignment test, genetic discontinuity, moving windows, multilocus genotype, spatial genetics

Received 24 September 2006; revision accepted 9 January 2007

Introduction

Delineating populations is a crucial first step for assessing evolutionary processes (e.g. local adaptation, gene flow) and for the preservation of biodiversity (e.g. identification of management units). The definition of a population remains an area of active discussion (Waples & Gaggiotti 2006). Here, we present a new approach that combines large molecular datasets, assignment tests and spatial moving window analysis to identify population boundaries.

Classical population genetic analyses consist of sampling groups of individuals from predefined populations, and then estimating allele frequencies and parameters, such as genetic distance and F-statistics (Weir & Cockerham 1984; Nei 1987). For more continuously distributed populations, individuals are at risk of being grouped somewhat arbitrarily using unproven criteria, such as habitat characteristics, morphological differences, geographical distance, or political boundaries (Pritchard et al. 2000). Also, classical population genetic analyses do not utilize the full discriminatory power of multilocus data (Waser & Strobek 1998).

A spatial Bayesian clustering methods (Pritchard et al. 2000; Corander et al. 2003) have emerged as a popular new tool for defining populations using multilocus genotype data. When the genetic structure coincides with the geography, using spatial information might increase the power of detecting genetic discontinuities. However, using spatial methods to localize genetic discontinuities among individuals remains rare in the field of population genetics (e.g. Barbujani et al. 1989; Bocquet-Appel & Bacro 1994; Sokal

© 2007 The Authors
Journal compilation © 2007 Blackwell Publishing Ltd
Perhaps one of the major reasons is the lack of available datasets with both genetic and geographical coordinate information, but this limitation has now been removed. New spatial Bayesian clustering algorithms (e.g. Guillot et al. 2005; Corander et al. 2006; François et al. 2006) indirectly identify genetic boundaries at an individual level. An alternative and complementary approach is to look directly for zones of sharp change in genetic data (Legendre & Legendre 2006). Two main approaches are available to achieve this goal: the Monmonier algorithm (Monmonnier 1973; Manni et al. 2004; Miller 2005) based on genetic distance analysis and the ‘wombling’ method (Womble 1951; Barbujani et al. 1989) based on the analysis of allele frequencies.

Here, we introduce a new approach that uses individual genotypes and their geographical co-ordinates to identify populations. This new approach has the potential to reveal genetic discontinuities and identify migrants without prior assumptions about population boundaries. Our method does not group individuals a priori into perceived populations, but rather adopts a spatial approach by using a ‘moving window’ placed across points of a grid map to identify population boundaries from the inferred genetic discontinuities.

We illustrate and validate this new approach using simulations and two empirical datasets from two types of molecular marker systems. Our first dataset encompasses 18 microsatellites loci from 964 brown bear (Ursus arctos) samples collected across Scandinavia. The second dataset contains 382 samples of the shrub Rhododendron ferrugineum sampled over the entire European Alps, and genotyped at 123 polymorphic AFLP markers.

Materials and methods

Description of the method

Our approach applies an assignment test locally within a moving window over the entire sampled area (Paetkau et al. 1995; Rannala & Mountain 1997). Thus, a probability map is constructed for each individual, showing the estimated probability of finding its multilocus genotype at each point of a grid across the landscape. The local variation of probability between adjacent points is used to calculate a slope at each point of the grid across the landscape. Each map reveals the most likely region of origin of the individual (i.e. area with the highest probabilities), and also highlights areas where the probability rapidly declines (greatest slope). The mean slopes calculated for all the individual probability maps are used to identify population genetic discontinuities and thus putative population boundaries.

Data analysis consisted of three main steps. First, for each individual, we constructed a map showing the probability of finding its multilocus genotype at each of many points across the landscape (Fig. 1). Points were distributed on a grid with a distance d between adjacent points. The algorithm consisted of: (i) removing the individual to be assigned; (ii) computing allele frequencies using individuals within a window of radius R around each point of the grid; (iii) computing the logarithm of the probability (log-likelihood) that the individual multilocus genotype occurs in the area around each point of the grid, based on the Bayesian assignment method of Rannala & Mountain (1997); and (iv) graphically representing the log-likelihood values in each point. The graphical representation consists of a circle, whose size corresponds to the magnitude of the log-likelihood. To avoid imprecise estimates of allele frequencies, we considered only windows with more than n_{min} individuals ($n_{\text{min}} = 20$ for the simulations and the brown bear dataset; $n_{\text{min}} = 10$ for the R. ferrugineum dataset). Missing data are allowed in the model by omitting missing loci when calculating individual probabilities (Pritchard et al. 2000). The appropriate values of d and R have to be determined by the user and will vary by species depending on density, home range size and dispersal ability.

Second, we identified the geographical zones of highest genetic change (discontinuity) for all individuals. Such discontinuities represent putative population boundaries. For each individual and for each point of the grid, we estimated the slope of the likelihood function. For each point of the grid, the slope was estimated as the mean absolute value of the difference between the likelihood value at the point considered and the eight adjacent points (if available). This resulted in a map of slopes of the likelihood function for each individual. In the final step, all individual slope maps were combined to produce the final map, where the slopes values at each point of the grid corresponds to the mean slopes values estimated over all individuals.

The significance of the mean slope values was estimated through a randomization test (Sokal & Rohlf 1981; Monte Carlo procedure). Null distributions of mean slopes were constructed for each point of the grid. Individual locations were randomised with respect to individual genotypes. Mean slopes for each point of the grid were estimated for each randomised data set. On the basis of the resulting distribution of mean slopes for each point of the grid, we decide whether the mean slope observed for the analysed data deviated less or more than the distribution at a level α (e.g. $\alpha = 0.05$).

The probability maps, the identification of genetic discontinuities and their significance were conducted using a C++ computer program (available upon request) and the GIS software ARCVIEW (version 3.1). A fully implemented, user-friendly program is in development.

Simulations

Microsatellite genotypes were simulated with the program EASYPOP (Balloux 2001) using the following parameters:
random mating, same number of males and females in each population, same migration scheme, low migration rate (0.00001), free recombination between loci and KAM mutation model. Individual spatial coordinates were independently generated using the software r (r Development Core Team 2004) with the objective of creating three scenarios differing in spatial distribution and genetic structure (Fig. 2). Each scenario was replicated 10 times, but only one repetition is shown. First, one population (1000 individuals and 20 loci) was generated with a spatially continuous distribution and no genetic boundary (Fig. 2a). Second, the same population was then distributed into two spatially separated subpopulations but with no genetic boundary (Fig. 2b). Finally, two genetically differentiated populations (300 individuals each, 20 loci, $F_{ST} = 0.1$) were generated and uniformly distributed in space (Fig. 2c). The uniform distributions were chosen in order to obtain two populations with similar mean x-values, but different mean y-values.

Brown bears (Ursus arctos) in Scandinavia

We used a dataset consisting of 18 microsatellite loci genotyped for 964 brown bears distributed over c. 200,000 km2 in Sweden (Waits et al. 2000; Bellemain 2004) (Fig. 3a). The 18 microsatellite loci (G1A, G1D, G10B, G10C, G10L, G10P, G10X, G10H, G10O, G10J, Mu05, Mu10, Mu15, Mu23, Mu50, Mu51, Mu59, Mu61) were described in Waits et al. (2000). The error rate per locus for this dataset was estimated to be 0.008 (Bonin et al. 2004).

We analysed three datasets: the entire dataset comprising the 964 individuals, the 517 males and the 447 females. The parameters d and R were set at 50 and 120 km, respectively. Only windows containing at least 20 individuals were considered. The value of d was chosen in relation to the size and the shape of the sampled area and the density of the sampling. The value of R was chosen to insure that each moving window would contain enough individuals to obtain reliable estimate allele frequencies. This value of
R produced 100 windows with a minimum of 20 individuals where the slope is calculated.

A subset of these data (366 bears) was previously analysed using a classical approach (F_{ST} and assignment tests), grouping individuals into four putative populations corresponding to areas with a high density of females (Waits et al. 2000). A second study based on the analysis of the same 366 multi-locus genotypes, but using a Bayesian clustering approach without a priori population definition (Pritchard et al. 2000), identified only three main genetic groups (Manel et al. 2004).

Rhododendron ferrugineum in the Alps

Leaf samples of *R. ferrugineum* were collected during summer 2004 across the entire European Alps (latitude: 44°48’ to 48°36’; longitude: 5°20’ to 15°40’). A 12’ latitude × 20’ longitude (c. 23 km × 25 km) grid was adopted and three plants were sampled in every other cell (Fig. 3b), resulting in a total of 381 samples (127 cells) distributed over c. 171 350 km². Because vegetative growth is extensive in *R. ferrugineum*, sampled plants were chosen at least 10 m apart to avoid sampling several ramets of a single genet. Samples were immediately dried in silica gel and preserved at room temperature. AFLP data were generated using a protocol inspired from Vos et al. (1995). After electrophoresis on an ABI 3100 automated sequencer, 123 polymorphic AFLP markers were manually scored as present/absent using the Genographer software (http://hordeum.oscs.montana.edu/genographer/). An error rate per locus of 0.013 was estimated by duplicating analyses for 46 random samples.

Binary AFLP data were then recoded as suggested by Evanno et al. (2005). Because dominant homozygotes and heterozygotes cannot be distinguished, marker presence was recoded as 1–9 and the absence as 0 0, where 1 indicates presence of the band, −9 indicates a missing data and 0 absence of the band. d and R were set at 25 and 50 km, respectively. For the AFLP dataset, we used only windows containing at least 10 individuals. The value of d (25 km) is directly related to the size of the sampling grid (23 km × 25 km). The value of R (50 km) was chosen to insure that enough individuals (at least 10) are in the windows to calculate allele frequencies.

Results

Visualization of the results on maps

Our new method produces two types of maps. The first map represents the log-likelihood of observing an individual’s
multilocus genotype at each point of the grid. The second type of map is a single map of the mean slopes of the log-likelihood surfaces calculated over all individuals. For visualization purposes, we have chosen to represent the value of each parameter (log-likelihood and slopes) calculated at each point of the grid with circles of varying sizes. For the slopes, two alternative representations can be used, either for highlighting the discontinuities by representing the highest slopes with large circles (see, e.g. Figure 4 representing the results of the simulations), or for highlighting the populations themselves by representing the highest slopes with a small circles (see, e.g. Figures 5 and 7 representing the results of the empirical datasets).

Simulations

As expected, no genetic discontinuity was identified when we simulated a single population regardless of its spatial distribution (continuous or two patches; not shown). In the case of two simulated populations with $F_{ST} = 0.1$ and the distance between each point of the grid $d = 40$ m, Fig. 4 shows the significant genetic discontinuities ($\alpha = 0.05$) according to different moving windows sizes ($R = 80$ m; $R = 120$ m; $R = 200$ m). The moving windows with less than 20 individuals ($n_{min} = 20$) were not considered. With $R = 80$ m, many points of the grid were not considered because the number of individuals within the moving windows were lower than n_{min} (Fig. 4a). As a consequence, the above combination of the parameters ($d = 40$; $R = 80$; $n_{min} = 20$) does not allow the identification of the genetic discontinuity. The analysis can be improved either by increasing R, or by decreasing n_{min}. With $R = 120$, the genetic discontinuity is properly identified (Fig. 4b), even with higher stringency ($79, 75$ and 68 slopes were significant with $\alpha = 0.05, 0.01$ and 0.001, respectively). With $R = 200$, the genetic discontinuity is also identified, but with less spatial precision, i.e. the significant slopes cover a larger geographical area (Fig. 4c).
Three homogeneous regions (i.e., putative populations) were found (Fig. 3a), corresponding to the S, M and N regions (Fig. 3a) already identified by Manel et al. (2004). Nevertheless, permutation tests indicated that almost all slopes (97%) were significant at the 1% level, including small values in regions that we considered homogeneous (large grey circles, Fig. 5a). The strong population genetic discontinuity detected between the M and S regions (Fig. 3a) also corresponds to a female gene flow discontinuity detected using mitochondrial DNA data (Taberlet et al. 1995). A second discontinuity was detected between the M and N regions.

When the sexes were separated, the global genetic structures did not differ significantly (Fig. 5b, c). However, the mean slope values were significantly lower for male than for female samples (student t-test, t = −2.05, P < 0.05), indicating a stronger genetic structure for females than for males.

Using individual probability maps, it is also possible to determine whether each individual is a resident or a putative migrant. For example, a resident is an individual sampled in the region where its multilocus genotype is most likely to originate (Fig. 6a). In contrast, a migrant is an individual sampled in a region where its multiloci genotype is unlikely (Fig. 6b).

Discussion

Our new method for spatially locating genetic discontinuities based on local assignment tests applied in a moving window performed well in all evaluations. Using the simulated datasets, the method did not reveal a genetic discontinuity when applied to a single population, regardless of the geographical distribution of the samples (i.e., one vs. two patches). In the simulation scenario with two moderately differentiated populations (FST = 0.1), the spatial location of the genetic discontinuity was correctly identified. In addition, the method performed well on two empirical datasets using two different types of markers (microsatellite vs. AFLP).

Interpretation of the results on the two empirical datasets

Scandinavian brown bear dataset. The three populations identified by our new method are consistent with the known demographic history of this species and previous genetic analyses using other genetic analysis approaches (Waits et al. 2000; Manel et al. 2004). But the results obtained in this study add new information about the exact spatial location of the boundaries and their significance. To evaluate the ability of our method to detect different levels of population structure, we calculated FST values for the three identified populations (Fig. 5a). The lowest value, calculated between M and N areas, was 0.05 and demonstrated that...
The approach was able to detect genetic discontinuities even at relatively low levels of divergence.

The presence of significant slopes within areas inferred to be homogeneous (i.e. populations) can be explained by the known matriarchal structure of bears, with females associating spatially with close relatives (Støen et al. 2005). This means that when moving a window with a radius of 120 km, the new individuals integrated in the window differ significantly from the removed individuals. The fact that male bears appeared to be less genetically structured than female bears is in accordance with behavioural data, i.e. males are the dispersing sex (McLellan & Hovey 2001; Støen et al. 2006). This method is also useful for identifying migrant individuals. For example, a male sampled in the south was identified as a migrant from the northernmost population (Fig. 6b). Mitochondrial DNA analysis confirmed this finding, since this bear has a mitochondrial DNA sequence from the eastern lineage which is only observed in Scandinavian from the M and N populations (Taberlet et al. 1995).

Rhododendron dataset. The classification of rhododendron samples into three populations agrees with the structure identified with the methods of Pritchard et al. (2000) (data not shown). We hypothesize that the genetic discontinuities in this species correspond to contact zones among populations that were previously isolated in different refugia during Quaternary cold periods (Schönswetter et al. 2005). Estimation of F_{ST} values between the three populations revealed moderate to high levels of genetic differentiation with the lowest F_{ST} (0.16) between the eastern and central regions.

Advantages and limitations of the method

Our new approach is simple in practice and based on a well-known method, assignment tests (Paetkau et al. 1995; Rannala & Mountain 1997), that is widely used and validated (Cornuet et al. 1999; Peatkau et al. 2004). Another advantage of the approach is that the output allows easy visual interpretation of the spatial location of genetic discontinuities. This individual-based approach can be applied across a wide range of geographical scales, from within local populations to the continent level, and to any organism showing genetic variation. Interestingly, there has been much controversy in projects such as the human...
Fig. 6 Example of likelihood maps for brown bears. Large circles indicate a higher probability of finding the particular multilocus genotype. The cross represents the sampling location. (a) An individual assigned to its area of sampling origin (area M). (b) A migrant (from area N to area S).

Fig. 7 Map showing the three putative populations for *R. ferrugineum* in the Alps. Large grey circles characterize small slope values (homogeneous regions) and small grey circles large slope values (genetic discontinuities). Overlaid small black circles indicate the slopes that are significant ($\alpha = 0.05$). Small crosses (+) represent sampled individuals. When the slope is very high, only the black circle (indicating significance of the slope) is visible.
genome diversity project, as to which sampling strategy to adopt: a systematic sampling using a grid or a sampling only of populations identified a priori (Cavalli-Sforza et al. 1991; Greely 2001). Our results illustrate that a systematic sampling on a grid or evenly spaced sampling is efficient for identifying spatial patterns of genetic diversity. This approach will be especially useful when studying large continuous populations with no obvious boundaries or with cryptic barriers to gene flow. However it requires a continuous, evenly spaced sampling and multiple genetic markers to provide enough resolution to assign individuals to a sampling region with confidence. The importance of continuous, evenly spaced sampling in landscape studies that seek to detect the spatial location of population boundaries was also noted by Guillot et al. (2005).

The results of our method were mainly influenced by the size of the windows, R. For a fixed value of d, increasing R decreases the precision of the localization of the boundary: for example if d = 40 m and R = 240 m, the boundary would be identified at a precision of ± 260 m (R + d/2). Thus researchers will want to use the smallest possible value of R. However, as R decreases it becomes more difficult to maintain enough individuals in a window for accurately estimating allele frequencies. In the case of R. ferrugineum, the low minimum number of individuals per windows (10) was compensated by a relatively high number of markers (i.e. 123). This choice influences the accuracy of the location and the time of computing. Implementation of the method requires finding the optimal balance between R (radius of the windows) and d (distance between adjacent points of the grid) to identify zones of sharp discontinuities with meaningful geographical precision. Nevertheless, the method is robust when using different values for the moving window and grid sizes, because it always locates the discontinuities (i.e. the discontinuities are always at the same place, but are detected less accurately). Finally, the choice of R and d will depend on the study organism and the density of sampling and requires multiple iterations of attempts.

In summary, our method first produces likelihood maps for each individual. These maps allow the identification of migrants, corresponding to the individuals that were sampled far from the area where their multilocus genotypes are more likely. For example, the examination of the distribution of geographical distances between individuals and their ‘windows’ with largest assignment probabilities should provide valuable data about the dispersion distances. Second, the approach can identify the geographical location of genetic discontinuities from multilocus genotypes and individual geographical locations and adds a new tool for addressing the first step of landscape genetics (Manel et al. 2003). It can be used to detect conservation units by identifying cryptic genetic boundaries when individuals are continuously distributed across space. Its main advantages come from its ease of implementation and from the simplicity of the theory behind assignment tests. It is less sophisticated than the recent spatial Bayesian clustering method introduced by Guillot et al. (2005) and Corander et al. (2006) where the spatial organization of populations is modelled through the coloured Voronoi tessellation. Our new approach and the two previous methods differ from Wombling (Womble 1951) in that they use multilocus data instead of analysing each allele separately. They also differ from Monmonier algorithm (Monmonier 1973), because this is a distance-based method that is generally applied at the population level. These methods have never been thoroughly compared, and the next step will therefore be to assess their relative performance in identifying genetic discontinuities and population boundaries in a spatial context.

Once a genetic discontinuity has been detected, an exciting new research direction will be to determine the underlying explanatory variables by overlaying spatial maps of genetic variation onto maps of environmental variables and exploiting spatial statistics and GIS (e.g. Manel et al. 2003; Spear et al. 2005). Such approaches have many applications in expanding our fundamental knowledge of ecology, evolution, behaviour and landscape level processes. There is clearly great potential in this analytical approach and much need for further development and validation of individual-based geographical approaches in population genetics.

Acknowledgements

We thank J. Hogg and M. Schwartz for helpful discussions and comments on the manuscript. This study was supported by the University Joseph Fourier (Grenoble), the Centre National de la Recherche Scientifique, the Swedish Environmental Protection Agency, the Norwegian Directorate for Nature Management, the Research Council of Norway, the Swedish Association for Hunting and Wildlife Management, and the WWF-Sweden. Most of the computations were performed at the LPM2C.

References

This work has been done in collaboration with different researchers. Stéphanie Manel and Lisette Waits are interested in developing spatial analysis in population genetics (i.e. landscape genetics). Françoise Berthoud is a computer scientist that helped in the development of the C++ program. Pierre Taberlet and Gordon Luikart are interested in population genetics and molecular tools. Pierre Taberlet is the leader of the European project that provided the Rhododendron datasets. Jon Swenson is the scientific leader of the Scandinavian brown bear research project. Eva Bellemain is a postdoctoral researcher interested in population genetics and evolution. Myriam Gaudeul is interested in various aspects of plant evolutionary biology, including biogeography and population genetics.

© 2007 The Authors
Journal compilation © 2007 Blackwell Publishing Ltd
Annexe 1

IntraBioDiv Consortium

The IntraBioDiv Consortium is composed of members of the IntraBioDiv project, as well as additional scientists, botanical experts, and technical assistants who participated to this project in relation with the official contractors and subcontractors.

The project has been supported financially by the European Commission, under the Six Framework Programme.

Acronym: IntraBioDiv

Title: Tracking surrogates for intraspecific biodiversity: towards efficient selection strategies for the conservation of natural genetic resources using comparative mapping and modelling approaches.

Reference: GOCE-CT-2003-505376

Duration: 1st January 2004–31st December 2006

Coordinator: Pierre Taberlet

Scientists

Wolfgang AHLMER6
Paolo AJMONE MARSAN2
Nadir ALVAREZ3
Enzo BONA9
Maurizio BOVIO9
Elzbieta CIESLAK12
Gheorghe COLDEA11
Licia COLLI2
Vasile CRISTEA11
Jean-Pierre DALMAS8
Thorsten ENGLISCH4
Luc GARRAUD8
Myriam GAUDEUL1
Ludovic GIELLY1
Felix GUGERLI5
Walter GUTERMANN4
Rolf HOLDEREGGER5
Nejc JOGAN7
Alexander A. KAGALO18
Grażyna KORBECKA12
Philippe KÜPFER3
Benoît LEQUETTE14
Dominik Roman LETZ10
Stéphanie MANEL1
Guilhem MANSION3
Karol MARHOLD10
Fabrizio MARTINI9
Zbigniew MIREK12
Riccardo NEGRINI2
Harald NIKFELD4
Fernando NINO13
Massimiliano PATRINI1
Ovidiu PAUN4
Marco PELLECCHIA2

Giovanni PERICO9
Halina PIEKOS-MIRKOWA12
Peter POSCHLOD6
Filippo PROSSER16
Mihai PUSCAS11
Micha3 RONIKIER12
Patrizia ROSSI15
Martin SCHEUERER6
Gerald SCHNEEWEISS4
Peter SCHÖNWSWETTER4
Luise SCHRAFFT-EHRENSDORFER4
Fanny SCHÜPFER3
Alberto SELVAGGI17
Katherina STEINMANN5
Pierre TABERLET1
Conny THIEL5
Andreas TRIBSCH4
Marcela VAN LOO4
Manuela WINKLER4
Thomas WOHLGEMUTH5
Tone WRABER7
Niklaus ZIMMERMANN5

Botanical experts

Gabriel ALZIAR14
Carlo ARGENTI16
Tinka BACIC7
Jean-Eric BERTHOUSE14
Alessio BERTOLLI16
Enrico BRESSAN9
François BRETON14
Massimo BUCCHERI9
Sonia D’ANDREA17
Sergio DANIELI9
Rosanna DE MATTEI17
Thierry DELAHAYE8
Roberto DELLA VEDOVA17
Cédric DENTANT8
Alessandra DI TURI17
Wolfgang DIEWALD8
Rolland DOUZET1
Constantin DRAGULESCU11
Philippe DRUART3
Siegrun ERTL4
Delphine FALLOUR-RUBIO14
Gino FANTINI9
Paolo FANTINI15
Germano FEDERICI9
Franco FENAROLI9
Viera FERÁKOVÁ10
Roberto FERRANGI9
Francesco FESTI16
Bozo FRAJMAN7
Jean-Claude GACHET14
Bruno GALLINO17