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demonstrated that a top predator, the dingo (Canis lupus dingo), 
shifted its activity away from human activity on properties where 
it was hunted. This in turn leads to a release of  activity by a meso-
predator, the feral cat, which resulted in higher predation rates on 
prey species. However, few studies have tested whether activity shifts 
and di�erences in individual activity indeed increase an individual�s 
survival under predation pressure (but see Pizzatto et�al. 2008; Ciuti 
et�al. 2012a; Lone et�al. 2016). Lastly, animals inhabiting areas with 
more human-built infrastructures, like roads (Ordiz et�al. 2014) or 
wildlife crossings (Barrueto et� al. 2014) may display di�erent diel 
activity patterns as then their conspeci�cs inhabiting more remote 
areas. When species shift diel activity asynchronously in response 
to infrastructures (Barrueto et�al. 2014), they have the potential to 
alter species interactions at the community level. Despite the dem-
onstrated importance of  diel activity on fundamental ecological 
processes and increasingly large amounts of  individual-based moni-
toring data collected by many wildlife research projects, individual 
di�erences in activity tactics at the population level, their drivers, 
and their ecological consequences are still rarely quanti�ed.

Our objectives were to 1)�quantify individual variation in activity 
patterns and test for the presence of  distinct diel activity strategies, 
2)� to identify extrinsic and intrinsic determinants of  tactic expres-
sion, 3)� determine whether activity tactics have consequences for 
immediate survival, and 4)� test for within-individual repeatability 
of  activity tactics for individuals that were monitored over several 
years.

Our model species, the Scandinavian brown bear (Ursus arctos) is 
generally thought to follow a bimodal activity pattern, with activ-
ity occurring in the early morning and afternoon hours and rest-
ing during midday and night (Moe et�al. 2007). There is, however, 
evidence for within-population variation in diel activity. For exam-
ple, female brown bears are more diurnal than males (Ordiz et�al. 
2007), particularly when they are accompanied by cubs, which are 
vulnerable to infanticide by male bears (Steyaert et�al. 2013). Bears 
further avoid humans by becoming more nocturnal at the onset of  
the hunting season (Ordiz et� al. 2012) and after encounters with 
humans (Ordiz et� al. 2013), and decrease foraging activity when 
mortality risk is highest (Hertel et�al. 2016b). It remains unknown 
whether bears with reduced activity during hours of  high mortal-
ity risk have a higher likelihood of  survival than individuals that 
remain active at those times. It has been shown that bears of  dif-
ferent demographic groups and after disturbance events exhibit 
behavioral �exibility in their diel activity pattern, and it is, there-
fore, conceivable that activity tactics may also vary among individ-
uals per se. We utilize a method that was originally developed to 
estimate the overlap of  activity patterns between species recorded 
with trail cameras (Meredith and Ridout 2014) to quantify indi-
vidual activity pro�les of  bears derived from high-resolution GPS 
movement data.

METHODS
Study�area
The study area was situated in southcentral Sweden (61°N, 14°E). 
The area is comprised of  intensely managed boreal forest, inter-
spersed by lakes and bogs. Scots pine (Pinus sylvestris) is the domi-
nating tree species, followed by Norway spruce (Picea abies). Human 
population density in the study area is low (4�7 inhabitants/km2: 
Ordiz et�al. 2014). An intense network of  forest roads (0.7 km/km2: 
Martin et� al. 2010), however, facilitates easy access into the study 

area. Recreational activities in the forest are mainly concentrated in 
the summer and autumn months (Ordiz et�al. 2011).

Bear�data
Bears were darted from a helicopter and equipped with GPS-
GSM neck collars (Vectronic Aerospace GmBh, Berlin, Germany) 
and a VHF transmitter implant (IMP 400L; Telonics, Mesa, AZ), 
see Arnemo and Fahlman (2011) for details on capture and han-
dling. All animal capture and handling were approved by the 
Ethical Committee on Animal Experiments in Uppsala, Sweden 
and the Swedish Environmental Protection Agency (Uppsala 
Djurförsöksetiska Nämd permissions C59/6, C47/9 and C7/12).

We used GPS relocation data of  brown bears taken at 30-min 
intervals over a 3-week period immediately before the fall hunt-
ing season, from 1 August until 20 August 2007�2013. The GPS 
data were collected into the Wireless Remote Animal Monitoring 
(Dettki et� al. 2014) database system for data validation and man-
agement. Locations were cleaned for dilution of  precision (DOP) 
values >10 and experimental approaches by humans on foot (Moen 
et�al. 2012). Experimental approaches have a pronounced e�ect on 
regular activity patterns for 72�h after the disturbance (Ordiz et�al. 
2013), we therefore also excluded all locations during the 3� days 
following an approach. We used positions of  solitary bears (i.e., 
females were not accompanied by cubs) that were >2�years of  age 
with at least 350 active relocations. Our activity classi�cation was 
strictly movement based. We calculated the straight-line distance 
between bear positions and classi�ed locations as active when the 
movement distance exceeded 25 m (Ordiz et�al. 2011; Hertel et�al. 
2016b, a sensitivity analysis for the 25 m cuto� value is provided in 
Supplementary Material 1).

Approximating the activity distribution
Using the function densityPlot from the �overlap� package 
(Meredith and Ridout 2014), we �tted kernel density curves to 
the timing of  circadian active behavior for each individual bear. 
We extracted the x (time in radians) and y (activity density) coor-
dinates underlying the densityPlot, which returns the smoothed 
activity density between 21:00 on day t � 1 and 3:00 on day t + 1, 
where estimates between 21:00 and 0:00 on day t � 1 are equal to 
estimates between 21:00 and 0:00 on day t. We truncated the time 
window to the 24-h cycle which yielded a total of  102 density esti-
mates. Since a day is a periodic event, the �rst density estimate is 
a continuation of  the last density estimate. Density curves calculate 
the relative occurrence of  an individual�s active observations over 
the 24-h cycle, thereby accounting for di�erential sampling e�ort 
among individuals. As activity within a day is a discrete behavior 
(active vs. passive) sampled over the course of  several days, the den-
sity smoother should be interpreted as the relative probability of  
being active (Figure�1).

Quantifying individual activity measures
We extracted the time of  day at which an individual�s density of  
activity was lowest and highest, that is, when an individual was 
most often active or inactive and calculated the di�erence between 
the highest and lowest density values as an indicator of  the regular-
ity of  activity behavior. A�low regularity index is indicative of  a less 
pronounced activity rhythm and activity at di�erent times of  day 
across the study period, whereas a high regularity indicates a low 
variance of  the activity pattern. We quanti�ed how active an indi-
vidual was during hours of  high mortality risk (6:00�10:00 (Hertel 
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more exposed to risky hours than individuals in clusters 3 and 4 
(Figure� 2a). The proportion of  active hours was associated with 
the second axis, indicating that individuals in clusters 1 and 3 were 
more likely to be active than not active during a larger proportion 
of  the day than those in clusters 2 and 4.�The timing of  minimum 
activity was associated with the �rst axis; 106 individuals prefer-
ably rested during midday (clusters 3 and 4), whereas 90 individuals 
rested most consistently during the night (clusters 1 and 2). Activity 
pro�les of  individuals in clusters 3 and 4 were more consistent than 
for those in clusters 1 and 2, which was re�ected by the �rst and 
third axes (see Figure�3 in Supplementary Material 2 for placement 
of  individuals along the �rst 3 PCA axes). Likewise, the timing of  
maximum activity was re�ected by the �rst and third axes, with 
most individuals (79%) being active later in the day, but individu-
als in cluster 1 tended to have their peak activity in the morning. 
Individuals in cluster 3 were generally more nocturnal and indi-
viduals in cluster 1 more diurnal (Figure�2b). Variation in activity 
measures of  bimodally active individuals was partitioned into 2 
clusters, ones that rested primarily during the day (cluster 4), and 
ones that rested primarily during the night (cluster 2, Figure� 2b). 
Individuals were categorized into phenotypes according to their 
closest cluster centroid (Figure�2a), individuals in overlapping areas 
of  cluster polygons are therefore similar to each other, despite being 
categorized into di�erent clusters. Overlap occurred in particular 
between the diurnal and bimodal with preferred night rest tactics 
(clusters 1 and 2, Figure�2a), indicating that categorization into one 
or the other phenotype must be considered with caution for indi-
viduals falling into the overlapping area.

Within-individual repeatability of activity patterns
For 50 individuals, activity tactics were obtained for multiple years 
(148 bear years). The number of  observations per individual 
ranged from 2 to 6� years (mean� –� SD� =� 2.96� –� 1.07). For each 
individual�s number of  observations, the distribution into focal 
and nonfocal tactic under random assignment was simulated 10 
times, yielding a total of  1480 random observations. Bears selected 
their focal tactic signi�cantly more often than expected by chance 
(� �–�SE�=�1.368�–�0.186, z�=�7.369, P�<�0.001) and 60% of  bears 
used one tactic more often than any other tactic (Figure�3).

Covariate effects on activity patterns and 
consequences for survival
The global model including 7 individual-based variables per-
formed signi�cantly better than the intercept only model (df�=�10, 

F-test�=�2.132, number permutations�=�999, P�=�0.002). The best 
model included the e�ect of  age (df�=�2, F�=�2.86, P�=�0.017), bear 
population density (df�=�1, F�=�4.64, P�=�0.007), and road density 
(df� =� 1, F� =� 4.062, P� =� 0.008). Total explained variation by the 
constraining variables was low, however (R2�=�0.07, adj. R2�=�0.051, 
Table� 1) with most variation explained by the unconstrained PC 
axes (Table�1). The accumulated explained variation by the �rst 2 
RDA axes was�94%.

Older bears were more diurnal and rested primarily during the 
night (Figure� 2c), whereas younger bears were more nocturnal. 
High bear density was re�ected along the second axis (Table�1) and 
associated with the nocturnal activity tactic. Higher road densi-
ties were associated with preferred day resting and activity during 
night. Nevertheless, nocturnal or diurnal activity tactics were not 
associated with survival in the subsequent hunting season (df�=�1, 
F� =� 0.9, P� =� 0.4). Activity tactics did not di�er between hunter-
killed and surviving individuals (Figure� 2b, � 2� =� 1.387, df� =� 3, 
P�=�0.709).

DISCUSSION
We detected pronounced individual variation in diel activity along 
a gradient from strictly nocturnal to strictly diurnal activity within 
our study population. Cluster analysis categorized activity patterns 
into 4 distinct activity tactics (Figure�2b), mainly structured by tim-
ing of  principal activity and resting, which occurred in approxi-
mately equal frequency. We also found that individual bears were 
likely to repeat the same tactic over multiple years (Figure� 3). 
Activity tactics were in�uenced by a series of  individual and envi-
ronment attributes (Figure� 2c). Survival in the upcoming hunting 
season was not a�ected by the activity tactic that an individual used 
prehunting.

Bears responded to increasing human access into their home 
range by being active primarily during the dark hours, most 
likely to avoid humans temporally, which is consistent with previ-
ous �ndings for our study population (Ordiz et�al. 2014) and else-
where (Stillfried et� al. 2015). Individual bears responded likewise 
to increasing bear density. Intraspeci�c temporal niche partition-
ing has been described for grizzly bears in the Greater Yellowstone 
Ecosystem, where females are primarily diurnal, whereas males are 
nocturnal (Schwartz et�al. 2010). In our population, younger indi-
viduals were more nocturnal than older ones, indicating a temporal 
niche partitioning driven by social organization (Bergmüller and 
Taborsky 2010). Because bears seem to prefer foraging during the 
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Figure�3
Within-individual repeatability of  activity tactics. For individuals that were observed in 2 or more years, the focal tactic was set to the activity pattern most 
often applied by this individual. Bars above the zero line present the number of  years in which an individual applied its most common tactic (color coded by 
activity tactic). Bars below the zero line represent years in which an individual applied a tactic other than its focal tactic.
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approach used here would have to be adjusted to allow for compari-
sons of  the absolute magnitude of  activity (i.e., between individuals 
that spend more or less time active).

For statistical purposes alone, individual di�erences should be 
taken into consideration more regularly, especially when models 
presume a certain data distribution. For example, activity is often 
analyzed using additive models and controlling for individual varia-
tion with a random intercept (Heurich et�al. 2014; Zuur et�al. 2014). 
However, a random intercept does not control for di�erences in 
the shape of  the smoother (analogous to the slope in linear regres-
sion). When individuals that are active at di�erent times of  day are 
entered into the same analysis, their di�erential data distribution 
thereby violates the underlying model assumptions and potentially 
in�uences conclusions drawn from the model output.

The key role that species-speci�c diel behavior plays in structur-
ing communities, for example by determining interactions between 
predators and prey (Brook et�al. 2012; Monterroso et�al. 2013) or 
intraguild temporal niche partitioning (Valeix et�al. 2007; Schwartz 
et�al. 2010; Swanson et�al. 2016), is undisputable. Intrapopulation 
individual variation in diel behavior of  wildlife is most commonly 
described for di�erent demographic groups (Schwartz et�al. 2010; 
Steyaert et� al. 2013) or when animals are exposed to di�erential 
environmental conditions (Barrueto et�al. 2014; Ensing et�al. 2014; 
Heurich et� al. 2014) and an individual�s diel activity tactic may 
thereby a�ect the role it exerts within its multispecies community. 
For example, when predation success is highest during distinct peri-
ods of  the day, but predators vary in their diel activity tactic, tem-
poral access to prey, foraging strategy, and diet composition may 
consequently vary between individuals (Estes et� al. 2003; Araœjo 
et�al. 2011). That individuals contribute di�erentially to the dynam-
ics of  this predator�prey relationship has broad implications for 
community ecology (Bolnick et�al. 2011).

The concepts behavioral plasticity, personality, and reac-
tion norms have been mainly studied in short-lived nonmam-
malian species, particularly in controlled environments (e.g., 
table�1 in Bergmüller and Taborsky 2010; Biro and Stamps 2008; 
Dingemanse et�al. 2010). Individual variation of  activity speci�cally 
may cause variation in reproductive success, when activity has a sig-
ni�cant and positive e�ect on food intake (Biro and Stamps 2008) 
and therefore may explain individual variation in �tness. However, 
few studies on large mammals (Müller and von Keyserlingk 2006) 
and, to our knowledge, none on free-living wildlife have explicitly 
tested this. This is particularly relevant, because of  the impor-
tance of  adaptive behavioral strategies on life histories and popu-
lation persistence, especially in species with long generation times 
(Refsnider and Janzen 2012).

SUPPLEMENTARY MATERIAL
Supplementary data are available at Behavioral Ecology online.
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